Chemical fact sheet: Gallic acid

The BCDB-database is not an authoritative database. This sheet collates data stored for chemical entry gallic acid and its related chemical compound entries 3, 4, 5-trihydroxybenzoic acid .

Gallic acid

Basics

Category
Hydroxycinnamic & hydroxybenzoic acid derivatives & other organic acid derivatives
IUPAC-name
3,4,5-trihydroxybenzoic acid
Formula
No formula stored
Exact mass
170.02150 g/mol
Molecular weight
170.12000 g/mol
Structure
Chemical structure of gallic acid
Figure 1.1: Chemical structure of gallic acid

Sources

In summary, the chemical gallic acid has been analyzed from following sources:

Note that an analysis result in the database may indicate either presence or lack thereof of a chemical in an analyzed sample.

References

  1. S. Khadem, and R. Marles, "Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies.," Molecules , vol. 15 , no. 11 , pp. 7985-8005 , DOI: 10.3390/molecules15117985 .
  2. V. Di Stefano, R. Pitonzo, M. Novara, D. Bongiorno, S. Indelicato, C. Gentile, G. Avellone, R. Bognanni, S. Scandurra, and M. Melilli, "Antioxidant activity and phenolic composition in pomegranate (Punica granatum L.) genotypes from south Italy by UHPLC-Orbitrap-MS approach.," Journal of the Science of Food and Agriculture , vol. 99 , pp. 1038–1045 , DOI: 10.1002/jsfa.9270 .
  3. J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .
  4. M. Natić, D. Dabić, A. Papetti, M. Fotirić Akšić, V. Ognjanov, M. Ljubojević, and Ž. Tešić, "Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia.," Food Chemistry , vol. 171 , pp. 128–136 , DOI: 10.1016/j.foodchem.2014.08.101 .
  5. S. Samardžić, J. Arsenijević, D. Božić, M. Milenković, V. Tešević, and Z. Maksimović, "Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. And Filipendula vulgaris Moench.," Journal of Ethnopharmacology , vol. 213 , pp. 132–137 , DOI: 10.1016/j.jep.2017.11.013 .
  6. S. Shi, Y. Zhao, H. Zhou, Y. Zhang, X. Jiang, and K. Huang, "Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography–diode array detection–radical scavenging detection–electrospray ionization mass spectrometry and nuclear magnetic resonance experiments.," Journal of Chromatography A , vol. 1209 , pp. 145–152 , DOI: 10.1016/j.chroma.2008.09.004 .
  7. N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis results

Analysis result 1

Detection technique Values Units
[M⁻ H]⁻ 169.01360 m/z
MS²⁻ 125.02330 m/z
STD
False
TLC
False
UV/Vis detector description
UHPLC-DAD
Mass spectrometer description
ESI-MS, quadrupole Orbitrap MS
Organism
Punica granatum
cultivated
squeezed, fresh, frozen, juice
Sample note
The samples were identified and collected by the researchers.
Dried material storage temperature
-20 °C
Dried material storage notes
dark
Extract liquid storage temperature
-20 °C
References

V. Di Stefano, R. Pitonzo, M. Novara, D. Bongiorno, S. Indelicato, C. Gentile, G. Avellone, R. Bognanni, S. Scandurra, and M. Melilli, "Antioxidant activity and phenolic composition in pomegranate (Punica granatum L.) genotypes from south Italy by UHPLC-Orbitrap-MS approach.," Journal of the Science of Food and Agriculture , vol. 99 , pp. 1038–1045 , DOI: 10.1002/jsfa.9270 .

Analysis result 2

Detection technique Values Units
[M⁻ H]⁻ 169.10000 m/z
MS²⁻ 125.10000 m/z
STD
True
TLC
False
UV/Vis detector description
UV/Vis
Mass spectrometer description
UPLC-ESI-Q-TOF-MS/MS
Organism
Rheum officinale  Baill.
cultivated
fresh, powdered
Sample note
The identification of Rheum officinale from the collected rhizome specimens were conducted by Prof. Li Xiang at the Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China.
Dried material storage temperature
-80 °C
Extraction solvents
methanol
Extraction repeats
1
Extraction temperature
4 °C
Analysis solvents
methanol
References

J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .

Analysis result 3

Detection technique Values Units
[M⁻ H]⁻ 169.10000 m/z
MS²⁻ 125.10000 m/z
STD
True
TLC
False
UV/Vis detector description
UV/Vis
Mass spectrometer description
UPLC-ESI-Q-TOF-MS/MS
Organism
Rheum palmatum  L.
cultivated
fresh, powdered
Sample note
The identification of Rheum palmatum from the collected rhizome specimens were conducted by Prof. Li Xiang at the Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China.
Dried material storage temperature
-80 °C
Extraction solvents
methanol
Extraction repeats
1
Extraction temperature
4 °C
Analysis solvents
methanol
References

J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .

Analysis result 4

Detection technique Values Units
[M⁻ H]⁻ 169.01400 m/z
MS²⁻ 125 m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC-DAD
Mass spectrometer description
UHPLC-DAD-MS/MS, triple-quadrupole, LTQ (linear trap quadrupole), high resolution mass spectrometer (UHPLC OrbiTrap MS), heated electrospray ionization (HESI)
Organism
Morus alba  L.
cultivated
homogenized, frozen
Collection dates
2011-6
Sample note
The black coloured fruits from one genotype from the location Palanka, North Serbia were collected by the researchers. Each genotype as represented by one tree, and each sample was taken from one individual plant. The tree was over 30 years old and originated from seed. All berries were picked at the biologically ripe stage. The berries were picked cardinally-oriented branches with different directions arond the canopy. Harvest time was between 10 and 20th June 2011. After picking, the fruits were stored at -20C until chemical analysis.
Dried material storage temperature
-20 °C
Extraction solvents
methanol containing 0.1% HCl
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
4
Extraction time
4 d 4 h
Extract drying method
evaporation under reduced pressure
Extract drying temperature
40 °C
Analysis solvents
MeOH:water (60:40)
References

M. Natić, D. Dabić, A. Papetti, M. Fotirić Akšić, V. Ognjanov, M. Ljubojević, and Ž. Tešić, "Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia.," Food Chemistry , vol. 171 , pp. 128–136 , DOI: 10.1016/j.foodchem.2014.08.101 .

Analysis result 5

Detection technique Values Units
[M⁻ H]⁻ 169.01400 m/z
MS²⁻ 125 m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC-DAD
Mass spectrometer description
UHPLC-DAD-MS/MS, triple-quadrupole, LTQ (linear trap quadrupole), high resolution mass spectrometer (UHPLC OrbiTrap MS), heated electrospray ionization (HESI)
Organism
Morus alba  L.
cultivated
homogenized, frozen
Collection dates
2011-6
Sample note
The black coloured fruits from one genotype from the location Novi Sad, North Serbia were collected by the researchers. Each genotype as represented by one tree, and each sample was taken from one individual plant. The tree was over 30 years old and originated from seed. All berries were picked at the biologically ripe stage. The berries were picked cardinally-oriented branches with different directions arond the canopy. Harvest time was between 10 and 20th June 2011. After picking, the fruits were stored at -20C until chemical analysis.
Dried material storage temperature
-20 °C
Extraction solvents
methanol containing 0.1% HCl
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
4
Extraction time
4 d 4 h
Extract drying method
evaporation under reduced pressure
Extract drying temperature
40 °C
Analysis solvents
MeOH:water (60:40)
References

M. Natić, D. Dabić, A. Papetti, M. Fotirić Akšić, V. Ognjanov, M. Ljubojević, and Ž. Tešić, "Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia.," Food Chemistry , vol. 171 , pp. 128–136 , DOI: 10.1016/j.foodchem.2014.08.101 .

Analysis result 6

STD
True
TLC
False
UV/Vis detector description
HPLC-DAD, HPLC-PDA
Mass spectrometer description
LC-ESI-MS
Organism
Filipendula ulmaria  (L.) Maxim.
wild
ground, dried
Collection dates
2016-7
Sample note
Plant material was identified by Professor Branislava Lakušik (Department of Botany, University of Belgrade - Faculty of Pharmacy) and voucher specimen; number 3872HFF was deposited in the Herbarium of the Department of Botany, University of Belgrade - Faculty of Pharmacy.
Extraction solvents
boiling water
Extraction repeats
1
Extraction time
30 min
Extract drying method
freeze-drying
Analysis solvents
aqueous infusion
Detection note
The compound was quantified; the UV spectral data was not shown.
References

S. Samardžić, J. Arsenijević, D. Božić, M. Milenković, V. Tešević, and Z. Maksimović, "Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. And Filipendula vulgaris Moench.," Journal of Ethnopharmacology , vol. 213 , pp. 132–137 , DOI: 10.1016/j.jep.2017.11.013 .

Analysis result 7

STD
True
TLC
False
UV/Vis detector description
HPLC-DAD, HPLC-PDA
Mass spectrometer description
LC-ESI-MS
Organism
Filipendula vulgaris  Moench
wild
ground, dried
Collection dates
2013-5, 2014-5
Sample note
Plant material was collected in 2013 and 2014 (analysed together) near Loćika and identified by Professor Branislava Lakušik (Department of Botany, University of Belgrade - Faculty of Pharmacy) and voucher specimen; number 3713HFF was deposited in the Herbarium of the Department of Botany, University of Belgrade - Faculty of Pharmacy.
Extraction solvents
boiling water
Extraction repeats
1
Extraction time
30 min
Extract drying method
freeze-drying
Analysis solvents
aqueous infusion
Detection note
The compound was quantified; the UV spectral data was not shown.
References

S. Samardžić, J. Arsenijević, D. Božić, M. Milenković, V. Tešević, and Z. Maksimović, "Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. And Filipendula vulgaris Moench.," Journal of Ethnopharmacology , vol. 213 , pp. 132–137 , DOI: 10.1016/j.jep.2017.11.013 .

Analysis result 8

Detection technique Values Units
UV/Vis 273 nm
[M⁻ H]⁻ 169 m/z
STD
False
TLC
False
UV/Vis detector description
HPLC-DAD, diode array detector
Mass spectrometer description
HPLC-ESI-MS, HPLC-DAD-ESI-MS
Organism
Taraxacum mongolicum  Hand.-Mazz.
wild
ground, dried
Sample note
The aerial part of Taraxacum mongolicum Hand.-Mazz. was identified by Prof. Liurong Chen. The voucher specimen (TM20041-02) was deposited in Department of Traditional Chinese Medicine and Natural Drug Research, College of Pharmaceutical Sciences, Zheijiang University.
Drying methods
air-dried
Drying temperature
50 °C
Extraction solvents
methanol
Extraction mass/volume-ratio
100 mg/mL
Extraction repeats
3
Extraction time
4 h 30 min
Extract drying method
concentration under reduced pressure
Extract drying temperature
45 °C
Dried extract storage temperature
4 °C
Analysis solvents
MeOH
References

S. Shi, Y. Zhao, H. Zhou, Y. Zhang, X. Jiang, and K. Huang, "Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography–diode array detection–radical scavenging detection–electrospray ionization mass spectrometry and nuclear magnetic resonance experiments.," Journal of Chromatography A , vol. 1209 , pp. 145–152 , DOI: 10.1016/j.chroma.2008.09.004 .

Analysis result 9

Detection technique Values Units
[M⁻ H]⁻ 169 m/z
MS²⁻ 125 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Dimitrograd was no. 2-1765. The aerial parts were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z) are presented, respectively, from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 10

Detection technique Values Units
[M⁻ H]⁻ 169 : ND m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Dimitrograd was no. 2-1765. The bulbs were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
Gallic acid was not detected in the bulbs, contrary to the aerial parts.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 11

Detection technique Values Units
[M⁻ H]⁻ 169 m/z
MS²⁻ 125 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Babusnica was no. 2-1767. The aerial parts were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z) are presented, respectively, from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 12

Detection technique Values Units
[M⁻ H]⁻ 169 : ND m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Babusnica was no. 2-1767. The bulbs were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
Gallic acid was not detected in the bulbs, contrary to the aerial parts.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

3, 4, 5-trihydroxybenzoic acid

Basics

Category
Phenolic acid
IUPAC-name
3,4,5-trihydroxybenzoic acid
Formula
No formula stored
Exact mass
170.02150 g/mol
Molecular weight
No weights stored
Structure
Chemical structure of 3, 4, 5-trihydroxybenzoic acid
Figure 2.1: Chemical structure of 3, 4, 5-trihydroxybenzoic acid

Sources

No links to any potential source for this chemical in the database.

References

  1. S. Khadem, and R. Marles, "Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies.," Molecules , vol. 15 , no. 11 , pp. 7985-8005 , DOI: 10.3390/molecules15117985 .

Analysis results

No analysis results for this entry in the database.