Chemical fact sheet: Kaempferol 3-O-galactoside

The BCDB-database is not an authoritative database. This sheet collates data stored for chemical entry kaempferol 3-O-galactoside and its related chemical compound entries trifolin .

Kaempferol 3-O-galactoside

Basics

Category
Flavone and flavonol derivatives
IUPAC-name
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one
Formula
C21H20O11
Exact mass
448.10056 g/mol
Molecular weight
448.37700 g/mol
Structure
Chemical structure of kaempferol 3-O-galactoside
Figure 1.1: Chemical structure of kaempferol 3-O-galactoside

Sources

In summary, the chemical kaempferol 3-O-galactoside has been analyzed from following sources:

Note that an analysis result in the database may indicate either presence or lack thereof of a chemical in an analyzed sample.

References

  1. J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis results

Analysis result 1

STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus palaestinus  L.
wild
dried, frozen
Sample note
The material (Accession Number 235663) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea. The collecting (by hand) of of florets of early stage samples started approximately 12 weeks after seed planting. These EARLY STAGE flower samples were collected before the beginning of the flowering, when the upper portion of the florets were about to emerge through the bracts. The samples wer snap-frozen using liquid nitrogen, the freeze--dried and stored at -80 ° until further processing. Visually seen, there was not yet much color in flowers, only white and light yellow hues. The length of spine was very short. The leaf shape was lanceolate.
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
Detection note
The exact mass was obtained.
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis result 2

STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus palaestinus  L.
wild
dried, frozen
Sample note
The material (Accession Number 235663) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea.These MIDDLE STAGE flower samples were collected when flowering was considered complete, i.e. more than 90 % of the florets were open. The florets were orange(-yellow).
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
Detection note
The exact mass was obtained.
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis result 3

STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus palaestinus  L.
wild
dried, frozen
Sample note
The material (Accession Number 235663) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea.These LATE STAGE flower samples were collected when the capitulum begins to expand and the seeds are about to start developing. The florets start to change color to orange/red.
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
Detection note
The exact mass was obtained.
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis result 4

STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus lanatus  L.
wild
dried, frozen
Sample note
The material (Accession Number W6 16791) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea. The collecting (by hand) of of florets of early stage samples started approximately 12 weeks after seed planting. These EARLY STAGE flower samples were collected before the beginning of the flowering, when the upper portion of the florets were about to emerge through the bracts. The samples wer snap-frozen using liquid nitrogen, the freeze--dried and stored at -80 ° until further processing. Visually seen, there was not yet much color in flowers, only white and light yellow hues. The leaf shape was lanceolate.
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis result 5

STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus lanatus  L.
wild
dried, frozen
Sample note
The material (Accession Number W6 16791) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea.These MIDDLE STAGE flower samples were collected when flowering was considered complete, i.e. more than 90 % of the florets were open. The florets were yellow and the pistils became orange as the development proceeded, and the colour started to change gradually yellos/red.
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis result 6

STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus lanatus  L.
wild
dried, frozen
Sample note
The material (Accession Number W6 16791)) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea.These LATE STAGE flower samples were collected when the capitulum begins to expand and the seeds are about to start developing. The florets start to change color to yellow&/red. The pistils became orange as the development proceeded.
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Trifolin

Basics

Category
Flavonol
IUPAC-name
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one
Formula
C21H20O11
Exact mass
448.10056 g/mol
Molecular weight
No weights stored
Structure
Chemical structure of trifolin
Figure 2.1: Chemical structure of trifolin

Sources

No links to any potential source for this chemical in the database.

References

Analysis results

No analysis results for this entry in the database.