Chemical fact sheet: Protocatechuic acid

The BCDB-database is not an authoritative database. This sheet collates data stored for chemical entry protocatechuic acid and its related chemical compound entries 3,4-dihydroxybenzoic acid .

Protocatechuic acid

Basics

Category
Hydroxycinnamic & hydroxybenzoic acid derivatives & other organic acid derivatives
IUPAC-name
3,4-dihydroxybenzoic acid
Formula
C7H6O4
Exact mass
154.02661 g/mol
Molecular weight
154.12000 g/mol
Structure
Chemical structure of protocatechuic acid
Figure 1.1: Chemical structure of protocatechuic acid

Sources

In summary, the chemical protocatechuic acid has been analyzed from following sources:

Note that an analysis result in the database may indicate either presence or lack thereof of a chemical in an analyzed sample.

References

  1. S. Khadem, and R. Marles, "Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies.," Molecules , vol. 15 , no. 11 , pp. 7985-8005 , DOI: 10.3390/molecules15117985 .
  2. J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .
  3. M. Natić, D. Dabić, A. Papetti, M. Fotirić Akšić, V. Ognjanov, M. Ljubojević, and Ž. Tešić, "Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia.," Food Chemistry , vol. 171 , pp. 128–136 , DOI: 10.1016/j.foodchem.2014.08.101 .
  4. N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .
  5. G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis results

Analysis result 1

STD
False
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus lanatus  L.
wild
dried, frozen
Sample note
The material (Accession Number W6 16791) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea.These MIDDLE STAGE flower samples were collected when flowering was considered complete, i.e. more than 90 % of the florets were open. The florets were yellow and the pistils became orange as the development proceeded, and the colour started to change gradually yellos/red.
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis result 2

STD
False
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus lanatus  L.
wild
dried, frozen
Sample note
The material (Accession Number W6 16791)) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea.These LATE STAGE flower samples were collected when the capitulum begins to expand and the seeds are about to start developing. The florets start to change color to yellow&/red. The pistils became orange as the development proceeded.
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis result 3

Detection technique Values Units
[M⁻ H]⁻ 153.01900 m/z
MS²⁻ 109
125
m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC-DAD
Mass spectrometer description
UHPLC-DAD-MS/MS, triple-quadrupole, LTQ (linear trap quadrupole), high resolution mass spectrometer (UHPLC OrbiTrap MS), heated electrospray ionization (HESI)
Organism
Morus alba  L.
cultivated
homogenized, frozen
Collection dates
2011-6
Sample note
The black coloured fruits from one genotype from the location Palanka, North Serbia were collected by the researchers. Each genotype as represented by one tree, and each sample was taken from one individual plant. The tree was over 30 years old and originated from seed. All berries were picked at the biologically ripe stage. The berries were picked cardinally-oriented branches with different directions arond the canopy. Harvest time was between 10 and 20th June 2011. After picking, the fruits were stored at -20C until chemical analysis.
Dried material storage temperature
-20 °C
Extraction solvents
methanol containing 0.1% HCl
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
4
Extraction time
4 d 4 h
Extract drying method
evaporation under reduced pressure
Extract drying temperature
40 °C
Analysis solvents
MeOH:water (60:40)
Detection note
MS2 fragments: 125 (5), 109 (100)
References

M. Natić, D. Dabić, A. Papetti, M. Fotirić Akšić, V. Ognjanov, M. Ljubojević, and Ž. Tešić, "Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia.," Food Chemistry , vol. 171 , pp. 128–136 , DOI: 10.1016/j.foodchem.2014.08.101 .

Analysis result 4

Detection technique Values Units
[M⁻ H]⁻ 153.01900 m/z
MS²⁻ 109
125
m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC-DAD
Mass spectrometer description
UHPLC-DAD-MS/MS, triple-quadrupole, LTQ (linear trap quadrupole), high resolution mass spectrometer (UHPLC OrbiTrap MS), heated electrospray ionization (HESI)
Organism
Morus alba  L.
cultivated
homogenized, frozen
Collection dates
2011-6
Sample note
The black coloured fruits from one genotype from the location Novi Sad, North Serbia were collected by the researchers. Each genotype as represented by one tree, and each sample was taken from one individual plant. The tree was over 30 years old and originated from seed. All berries were picked at the biologically ripe stage. The berries were picked cardinally-oriented branches with different directions arond the canopy. Harvest time was between 10 and 20th June 2011. After picking, the fruits were stored at -20C until chemical analysis.
Dried material storage temperature
-20 °C
Extraction solvents
methanol containing 0.1% HCl
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
4
Extraction time
4 d 4 h
Extract drying method
evaporation under reduced pressure
Extract drying temperature
40 °C
Analysis solvents
MeOH:water (60:40)
Detection note
MS2 fragments: 125 (5), 109 (100)
References

M. Natić, D. Dabić, A. Papetti, M. Fotirić Akšić, V. Ognjanov, M. Ljubojević, and Ž. Tešić, "Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia.," Food Chemistry , vol. 171 , pp. 128–136 , DOI: 10.1016/j.foodchem.2014.08.101 .

Analysis result 5

Detection technique Values Units
[M⁻ H]⁻ 153 m/z
MS²⁻ 109 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Dimitrograd was no. 2-1765. The aerial parts were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z) are presented, respectively, from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 6

Detection technique Values Units
[M⁻ H]⁻ 153 m/z
MS²⁻ 109 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Dimitrograd was no. 2-1765. The bulbs were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z) are presented, respectively, from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 7

Detection technique Values Units
[M⁻ H]⁻ 153 m/z
MS²⁻ 109 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Babusnica was no. 2-1767. The aerial parts were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z) are presented, respectively, from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 8

Detection technique Values Units
[M⁻ H]⁻ 153 m/z
MS²⁻ 109 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Babusnica was no. 2-1767. The bulbs were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z) are presented, respectively, from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 9

Detection technique Values Units
[M⁻ H]⁻ 153.01889 m/z
MS²⁻ 59
79
95
109
m/z
MS³⁻ 65
68
81
m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./ Microwave-assisted extraction (MAE) was performed at 600W microwave power.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
50 mg/mL
Extraction repeats
1
Extraction time
30 min
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 109 (100), 95 (75), 79 (20), 59 (10); MS3: 81 (100), 68 (25), 65 (15)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis result 10

Detection technique Values Units
[M⁻ H]⁻ 153.01889 m/z
MS²⁻ 59
79
95
109
m/z
MS³⁻ 65
68
81
m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./Sonication of plant-ethanol mixture was done in ultrasonic bath for an hour at 30 °C.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
40 mg/mL
Extraction repeats
1
Extraction time
1 h
Extraction temperature
30 °C
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 109 (100), 95 (75), 79 (20), 59 (10); MS3: 81 (100), 68 (25), 65 (15)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis result 11

Detection technique Values Units
[M⁻ H]⁻ 153.01889 m/z
MS²⁻ 59
79
95
109
m/z
MS³⁻ 65
68
81
m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./The plant samples were macerated at room temperature at dark for 24 h.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
50 mg/mL
Extraction repeats
1
Extraction time
1 d
Extraction temperature
20±5 °C
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 109 (100), 95 (75), 79 (20), 59 (10); MS3: 81 (100), 68 (25), 65 (15)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

3,4-dihydroxybenzoic acid

Basics

Category
Phenolic acid
IUPAC-name
3,4-dihydroxybenzoic acid
Formula
C7H6O4
Exact mass
154.02660 g/mol
Molecular weight
No weights stored
Structure
Chemical structure of 3,4-dihydroxybenzoic acid
Figure 2.1: Chemical structure of 3,4-dihydroxybenzoic acid

Sources

No links to any potential source for this chemical in the database.

References

  1. S. Khadem, and R. Marles, "Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies.," Molecules , vol. 15 , no. 11 , pp. 7985-8005 , DOI: 10.3390/molecules15117985 .

Analysis results

No analysis results for this entry in the database.