Chemical fact sheet: Luteolin

The BCDB-database is not an authoritative database. This sheet collates data stored for chemical entry luteolin and its related chemical compound entries 5,7,3',4'-tetrahydroxyflavone .

Luteolin

Basics

Category
Flavone and flavonol derivatives
IUPAC-name
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one
Formula
C15H10O6
Exact mass
286.04774 g/mol
Molecular weight
286.24000 g/mol
Structure
Chemical structure of luteolin
Figure 1.1: Chemical structure of luteolin

Sources

In summary, the chemical luteolin has been analyzed from following sources:

Note that an analysis result in the database may indicate either presence or lack thereof of a chemical in an analyzed sample.

References

  1. Ø. Andersen, and K. Markham, Flavonoids. Chemistry, biochemistry and applications.. CRC Press, 2006
  2. G. Chen, X. Li, F. Saleri, and M. Guo, "Analysis of flavonoids in Rhamnus davurica and its antiproliferative effects.," Molecules , vol. 21 , no. 10 , pp. 1275 , DOI: 10.3390/molecules21101275 .
  3. J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .
  4. R. Marques, M. Sousa, M. Oliveira, and M. Melo, "Characterization of weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography–diode array detection–mass spectrometry in Arraiolos historical textiles.," Journal of Chromatography A , vol. 1216 , pp. 1395–1402 , DOI: 10.1016/j.chroma.2008.12.083 .
  5. C. Moiteiro, H. Gaspar, A. Rodrigues, J. Lopes, and V. Carnide, "HPLC quantification of dye flavonoids in Reseda luteola L. from Portugal.," Journal of Separation Science , vol. 31 , pp. 3683–3687 , DOI: 10.1002/jssc.200800383 .
  6. S. Shi, Y. Zhao, H. Zhou, Y. Zhang, X. Jiang, and K. Huang, "Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography–diode array detection–radical scavenging detection–electrospray ionization mass spectrometry and nuclear magnetic resonance experiments.," Journal of Chromatography A , vol. 1209 , pp. 145–152 , DOI: 10.1016/j.chroma.2008.09.004 .
  7. N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .
  8. A. Villela, E. van der Klift, E. Mattheussens, G. Derksen, H. Zuilhof, and T. Beek, "Fast chromatographic separation for the quantitation of the main flavone dyes in Reseda luteola (weld).," Journal of Chromatography A , vol. 1218 , pp. 8544–8550 , DOI: 10.1016/j.chroma.2011.09.069 .
  9. G. Zengin, E. Sieniawska, I. Senkardes, M. Picot-Allain, K. Sinan, and M. Mahomoodally, "Antioxidant abilities, key enzyme inhibitory potential and phytochemical profile of Tanacetum poteriifolium Grierson.," Industrial Crops and Products , vol. 140 , pp. 111629 , DOI: 10.1016/j.indcrop.2019.111629 .
  10. G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis results

Analysis result 1

Detection technique Values Units
[M⁻ H]⁻ 285 m/z
MS²⁻ 133
151
175
199
217
241
267
285
m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
ESI-MS/MS
Organism
Rhamnus davurica  Pall.
dried, powdered
Sample note
The authentication and identification of the barks of Rhamnus davurica was performed with the researchers of this study which were assisted by the taxonomist Quangwan Hu from Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture (Wuhan Botanicl Garden), Chinese Academy of Sciences. A voucher specimen (No. 0031) was deposited in the herbarium of the Key Laboratory.
Drying temperature
40 °C
Dried material storage temperature
4 °C
Dried material storage notes
the samples were packed in sealed polyethylene bags; stored in a refrigerator until use; dark
Extraction solvents
60 % ethanol
Extraction repeats
3
Extraction time
1 h 30 min
Extraction temperature
20±5 °C
Extract drying method
evaporation under reduced pressure
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Analysis solvents
MeOH
References

G. Chen, X. Li, F. Saleri, and M. Guo, "Analysis of flavonoids in Rhamnus davurica and its antiproliferative effects.," Molecules , vol. 21 , no. 10 , pp. 1275 , DOI: 10.3390/molecules21101275 .

Analysis result 2

Detection technique Values Units
[M⁺ H]⁺ 287.10000 m/z
MS²⁺ 153.10000 m/z
STD
True
TLC
False
UV/Vis detector description
UV/Vis
Mass spectrometer description
UPLC-ESI-Q-TOF-MS/MS
Organism
Rheum officinale  Baill.
cultivated
fresh, powdered
Sample note
The identification of Rheum officinale from the collected rhizome specimens were conducted by Prof. Li Xiang at the Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China.
Dried material storage temperature
-80 °C
Extraction solvents
methanol
Extraction repeats
1
Extraction temperature
4 °C
Analysis solvents
methanol
References

J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .

Analysis result 3

Detection technique Values Units
[M⁺ H]⁺ 287.10000 m/z
MS²⁺ 153.10000 m/z
STD
True
TLC
False
UV/Vis detector description
UV/Vis
Mass spectrometer description
UPLC-ESI-Q-TOF-MS/MS
Organism
Rheum palmatum  L.
cultivated
fresh, powdered
Sample note
The identification of Rheum palmatum from the collected rhizome specimens were conducted by Prof. Li Xiang at the Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China.
Dried material storage temperature
-80 °C
Extraction solvents
methanol
Extraction repeats
1
Extraction temperature
4 °C
Analysis solvents
methanol
References

J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .

Analysis result 4

Detection technique Values Units
UV/Vis 254
349
nm
[M⁻ H]⁻ 285 m/z
STD
False
TLC
False
UV/Vis detector description
LC-diode array (DAD), PDA
Mass spectrometer description
ESI-MS, ion trap
Organism
Daphne gnidium  L.
wild
Collection dates
2007-5, 2007-6
Sample note
The samples were identified and collected by the researchers.
Extraction solvents
water
Extraction time
1 h
Extraction temperature
100 °C
Analysis solvents
water: MeOH, 8:2
References

R. Marques, M. Sousa, M. Oliveira, and M. Melo, "Characterization of weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography–diode array detection–mass spectrometry in Arraiolos historical textiles.," Journal of Chromatography A , vol. 1216 , pp. 1395–1402 , DOI: 10.1016/j.chroma.2008.12.083 .

Analysis result 5

STD
True
TLC
False
UV/Vis detector description
HPLC-UV/DAD
Mass spectrometer description
ESI-MS, 3-D IT
Organism
Reseda luteola  L.
wild
dried, powdered
Collection dates
2005-5, 2005-6
Sample note
The reseachers identified and collected the samples.
Drying methods
air-dried
Drying temperature
20±5 °C
Dried material storage temperature
-15 °C
Dried material storage notes
dark; as ground
Extraction solvents
methanol:water, 8 : 2
Extraction mass/volume-ratio
33.3 mg/mL
Extraction repeats
1
Extraction time
15 min
Extraction temperature
20±5 °C
Analysis solvents
MeOH:water, 8:2
References

C. Moiteiro, H. Gaspar, A. Rodrigues, J. Lopes, and V. Carnide, "HPLC quantification of dye flavonoids in Reseda luteola L. from Portugal.," Journal of Separation Science , vol. 31 , pp. 3683–3687 , DOI: 10.1002/jssc.200800383 .

Analysis result 6

Detection technique Values Units
UV/Vis 250
344
nm
[M⁻ H]⁻ 285 m/z
STD
False
TLC
False
UV/Vis detector description
HPLC-DAD, diode array detector
Mass spectrometer description
HPLC-ESI-MS, HPLC-DAD-ESI-MS
Organism
Taraxacum mongolicum  Hand.-Mazz.
wild
ground, dried
Sample note
The aerial part of Taraxacum mongolicum Hand.-Mazz. was identified by Prof. Liurong Chen. The voucher specimen (TM20041-02) was deposited in Department of Traditional Chinese Medicine and Natural Drug Research, College of Pharmaceutical Sciences, Zheijiang University.
Drying methods
air-dried
Drying temperature
50 °C
Extraction solvents
methanol
Extraction mass/volume-ratio
100 mg/mL
Extraction repeats
3
Extraction time
4 h 30 min
Extract drying method
concentration under reduced pressure
Extract drying temperature
45 °C
Dried extract storage temperature
4 °C
Analysis solvents
MeOH
References

S. Shi, Y. Zhao, H. Zhou, Y. Zhang, X. Jiang, and K. Huang, "Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography–diode array detection–radical scavenging detection–electrospray ionization mass spectrometry and nuclear magnetic resonance experiments.," Journal of Chromatography A , vol. 1209 , pp. 145–152 , DOI: 10.1016/j.chroma.2008.09.004 .

Analysis result 7

Detection technique Values Units
[M⁻ H]⁻ 285 m/z
MS²⁻ 133 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Dimitrograd was no. 2-1765. The aerial parts were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z), respectively, are presented from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 8

Detection technique Values Units
[M⁻ H]⁻ 285 : ND m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Dimitrograd was no. 2-1765. The bulbs were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
Luteolin was not detected in the bulbs, contrary to the aerial parts of this onion taxa.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 9

Detection technique Values Units
[M⁻ H]⁻ 285 m/z
MS²⁻ 133 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Babusnica was no. 2-1767. The aerial parts were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z), respectively, are presented from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 10

Detection technique Values Units
[M⁻ H]⁻ 285 m/z
MS²⁻ 133 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Babusnica was no. 2-1767. The bulbs were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z), respectively, are presented from the standard of this compound in the quantitative MS/MS-analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 11

Detection technique Values Units
UV/Vis 350 nm
STD
True
TLC
False
UV/Vis detector description
LC-diode array (DAD)
Mass spectrometer description
ESI-MS, ion trap
Organism
Reseda luteola  L.
cultivated
ground, dried
Collection dates
2007-8
Sample note
The reseachers identified the sample. The voucher specimen was deposited at Wageningen and identified by W. Olsder s.n. (WAG, barcodes WAG0248296–WAG0248298).
Drying methods
air-dried, dried outdoors daytime, dried indoors nighttime, 10 days
Dried material storage notes
dark; as ground
Extraction solvents
methanol:water, 8:2 (v/v)
Extraction mass/volume-ratio
20 mg/mL
Extraction time
16 h
Extraction temperature
20±5 °C
Analysis solvents
MeOH:water, 8:2 (v/v)
References

A. Villela, E. van der Klift, E. Mattheussens, G. Derksen, H. Zuilhof, and T. Beek, "Fast chromatographic separation for the quantitation of the main flavone dyes in Reseda luteola (weld).," Journal of Chromatography A , vol. 1218 , pp. 8544–8550 , DOI: 10.1016/j.chroma.2011.09.069 .

Analysis result 12

Detection technique Values Units
[M⁻ H]⁻ 285.03940 m/z
MS²⁻ 133.02910 m/z
STD
False
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-QTOF-MS/MS
Organism
Tanacetum poteriifolium  Grierson
wild
dried, powdered
Collection dates
2018
Sample note
Botanical authentication was d in Turkey.one by the botanist Dr. Ismail Senkardes (Marmara University, Faculty of Pharmacy Turkey). The samples were collected in Kastamonu (Hanonu, Yukaricakircay village)
Drying methods
air-dried, dark
Drying temperature
20±5 °C
Dried material storage temperature
4 °C
Dried material storage notes
10 days
Extraction solvents
methanol
Extraction mass/volume-ratio
50 mg/mL
Extraction repeats
1
Extraction time
1 d
Extract drying method
evaporation in vacuo
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Analysis solvents
MeOH
References

G. Zengin, E. Sieniawska, I. Senkardes, M. Picot-Allain, K. Sinan, and M. Mahomoodally, "Antioxidant abilities, key enzyme inhibitory potential and phytochemical profile of Tanacetum poteriifolium Grierson.," Industrial Crops and Products , vol. 140 , pp. 111629 , DOI: 10.1016/j.indcrop.2019.111629 .

Analysis result 13

Detection technique Values Units
[M⁻ H]⁻ 285.03905 m/z
MS²⁻ 175
199
217
241
257
m/z
MS³⁻ 183
197
211
227
255
m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./ Microwave-assisted extraction (MAE) was performed at 600W microwave power.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
50 mg/mL
Extraction repeats
1
Extraction time
30 min
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 257 (40), 241 (100), 217 (50), 199 (70), 175 (70); MS3: 255 (50), 227 (100), 211 (75), 197 (35), 183 (85)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis result 14

Detection technique Values Units
[M⁻ H]⁻ 285.03905 m/z
MS²⁻ 175
199
217
241
257
m/z
MS³⁻ 183
197
211
227
255
m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./Sonication of plant-ethanol mixture was done in ultrasonic bath for an hour at 30 °C.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
40 mg/mL
Extraction repeats
1
Extraction time
1 h
Extraction temperature
30 °C
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 257 (40), 241 (100), 217 (50), 199 (70), 175 (70); MS3: 255 (50), 227 (100), 211 (75), 197 (35), 183 (85)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis result 15

Detection technique Values Units
[M⁻ H]⁻ 285.03905 m/z
MS²⁻ 175
199
217
241
257
m/z
MS³⁻ 183
197
211
227
255
m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./The plant samples were macerated at room temperature at dark for 24 h.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
50 mg/mL
Extraction repeats
1
Extraction time
1 d
Extraction temperature
20±5 °C
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 257 (40), 241 (100), 217 (50), 199 (70), 175 (70); MS3: 255 (50), 227 (100), 211 (75), 197 (35), 183 (85)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

5,7,3',4'-tetrahydroxyflavone

Basics

Category
Flavone
IUPAC-name
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one
Formula
C15H10O6
Exact mass
286.04770 g/mol
Molecular weight
No weights stored
Structure
Chemical structure of 5,7,3',4'-tetrahydroxyflavone
Figure 2.1: Chemical structure of 5,7,3',4'-tetrahydroxyflavone

Sources

No links to any potential source for this chemical in the database.

References

  1. Ø. Andersen, and K. Markham, Flavonoids. Chemistry, biochemistry and applications.. CRC Press, 2006

Analysis results

No analysis results for this entry in the database.