Chemical fact sheet: Apigenin

The BCDB-database is not an authoritative database. This sheet collates data stored for chemical entry apigenin and its related chemical compound entries 5,7,4'-trihydroxyflavone .

Apigenin

Basics

Category
Flavone and flavonol derivatives
IUPAC-name
5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one
Formula
C15H10O5
Exact mass
270.05280 g/mol
Molecular weight
270.24000 g/mol
Structure
Chemical structure of apigenin
Figure 1.1: Chemical structure of apigenin

Sources

In summary, the chemical apigenin has been analyzed from following sources:

Note that an analysis result in the database may indicate either presence or lack thereof of a chemical in an analyzed sample.

References

  1. Ø. Andersen, and K. Markham, Flavonoids. Chemistry, biochemistry and applications.. CRC Press, 2006
  2. G. Chen, X. Li, F. Saleri, and M. Guo, "Analysis of flavonoids in Rhamnus davurica and its antiproliferative effects.," Molecules , vol. 21 , no. 10 , pp. 1275 , DOI: 10.3390/molecules21101275 .
  3. J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .
  4. J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .
  5. R. Marques, M. Sousa, M. Oliveira, and M. Melo, "Characterization of weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography–diode array detection–mass spectrometry in Arraiolos historical textiles.," Journal of Chromatography A , vol. 1216 , pp. 1395–1402 , DOI: 10.1016/j.chroma.2008.12.083 .
  6. N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .
  7. G. Zengin, E. Sieniawska, I. Senkardes, M. Picot-Allain, K. Sinan, and M. Mahomoodally, "Antioxidant abilities, key enzyme inhibitory potential and phytochemical profile of Tanacetum poteriifolium Grierson.," Industrial Crops and Products , vol. 140 , pp. 111629 , DOI: 10.1016/j.indcrop.2019.111629 .
  8. G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis results

Analysis result 1

Detection technique Values Units
[M⁻ H]⁻ 269 m/z
MS²⁻ 133
159
181
201
225
241
269
m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
ESI-MS/MS
Organism
Rhamnus davurica  Pall.
dried, powdered
Sample note
The authentication and identification of the barks of Rhamnus davurica was performed with the researchers of this study which were assisted by the taxonomist Quangwan Hu from Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture (Wuhan Botanicl Garden), Chinese Academy of Sciences. A voucher specimen (No. 0031) was deposited in the herbarium of the Key Laboratory.
Drying temperature
40 °C
Dried material storage temperature
4 °C
Dried material storage notes
the samples were packed in sealed polyethylene bags; stored in a refrigerator until use; dark
Extraction solvents
60 % ethanol
Extraction repeats
3
Extraction time
1 h 30 min
Extraction temperature
20±5 °C
Extract drying method
evaporation under reduced pressure
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Analysis solvents
MeOH
References

G. Chen, X. Li, F. Saleri, and M. Guo, "Analysis of flavonoids in Rhamnus davurica and its antiproliferative effects.," Molecules , vol. 21 , no. 10 , pp. 1275 , DOI: 10.3390/molecules21101275 .

Analysis result 2

STD
False
TLC
False
UV/Vis detector description
Mass spectrometer description
UHPLC-ESI-QTOF-MS, quadrupole time-of-flight
Organism
Carthamus palaestinus  L.
wild
dried, frozen
Sample note
The material (Accession Number 235663) were obtained from USDA National Plant Germplasm system. The seeds were planted and cultivated in a greenhouse at 18-25 °C located at the National Institute of Agricultural Sciences, Jeonju, Korea.These MIDDLE STAGE flower samples were collected when flowering was considered complete, i.e. more than 90 % of the florets were open. The florets were orange(-yellow).
Drying methods
freeze-dried
Dried material storage temperature
-80 °C
Extraction solvents
70 % methanol
Extraction mass/volume-ratio
25 mg/mL
Extraction repeats
5
Extraction time
35 min
Extraction temperature
4 °C
Analysis solvents
70 % methanol
Detection note
The exact mass obtained.
References

J. Kim, A. Assefa, J. Song, V. Mani, S. Park, S. Lee, K. Lee, D. Kim, and B. Hahn, "Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry.," Metabolites , vol. 10 , no. 11 , pp. 440 , DOI: 10.3390/metabo10110440 .

Analysis result 3

Detection technique Values Units
[M⁻ H]⁻ 269.10000 m/z
MS²⁻ 151.10000 m/z
STD
True
TLC
False
UV/Vis detector description
UV/Vis
Mass spectrometer description
UPLC-ESI-Q-TOF-MS/MS
Organism
Rheum officinale  Baill.
cultivated
fresh, powdered
Sample note
The identification of Rheum officinale from the collected rhizome specimens were conducted by Prof. Li Xiang at the Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China.
Dried material storage temperature
-80 °C
Extraction solvents
methanol
Extraction repeats
1
Extraction temperature
4 °C
Analysis solvents
methanol
References

J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .

Analysis result 4

Detection technique Values Units
[M⁻ H]⁻ 269.10000 m/z
MS²⁻ 151.10000 m/z
STD
True
TLC
False
UV/Vis detector description
UV/Vis
Mass spectrometer description
UPLC-ESI-Q-TOF-MS/MS
Organism
Rheum palmatum  L.
cultivated
fresh, powdered
Sample note
The identification of Rheum palmatum from the collected rhizome specimens were conducted by Prof. Li Xiang at the Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China.
Dried material storage temperature
-80 °C
Extraction solvents
methanol
Extraction repeats
1
Extraction temperature
4 °C
Analysis solvents
methanol
References

J. Liu, L. Leng, Y. Liu, H. Gao, W. Yang, S. Chen, and A. Liu, "Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis.," Scientific Reports , vol. 10 , no. 1 , pp. 20241 , DOI: 10.1038/s41598-020-77356-9 .

Analysis result 5

Detection technique Values Units
UV/Vis 267
338
nm
[M⁻ H]⁻ 269 m/z
STD
False
TLC
False
UV/Vis detector description
LC-diode array (DAD), PDA
Mass spectrometer description
ESI-MS, ion trap
Organism
Daphne gnidium  L.
wild
Collection dates
2007-5, 2007-6
Sample note
The samples were identified and collected by the researchers.
Extraction solvents
water
Extraction time
1 h
Extraction temperature
100 °C
Analysis solvents
water: MeOH, 8:2
References

R. Marques, M. Sousa, M. Oliveira, and M. Melo, "Characterization of weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography–diode array detection–mass spectrometry in Arraiolos historical textiles.," Journal of Chromatography A , vol. 1216 , pp. 1395–1402 , DOI: 10.1016/j.chroma.2008.12.083 .

Analysis result 6

Detection technique Values Units
[M⁻ H]⁻ 269 m/z
MS²⁻ 117 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Dimitrograd was no. 2-1765. The aerial parts were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z) are presented, respectively, from the standard of this compound in the quantitative analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 7

Detection technique Values Units
[M⁻ H]⁻ 269 m/z
MS²⁻ 117 m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Dimitrograd was no. 2-1765. The bulbs were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
Detection note
The precursor and product ions (m/z) are presented, respectively, from the standard of this compound in the quantitative analysis.
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 8

Detection technique Values Units
[M⁻ H]⁻ 269 : ND m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Babusnica was no. 2-1767. The aerial parts were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 9

Detection technique Values Units
[M⁻ H]⁻ 269 : ND m/z
STD
True
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-MS/MS, triple-quadrupole mass spectrometer
Organism
Allium flavum subsp. flavum  L.
wild
ground, dried
Sample note
The whole plants (aerial parts, bulbs) of wild-growing A. flavum subsp. flavum were collected in Serbia. The voucher specimens were prepared, identified and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), University of Novi Sad, Faculty of Sciences. The code of the specimens from Babusnica was no. 2-1767. The bulbs were analysed in this group.
Drying methods
air-dried
Extraction solvents
70 % aqueous methanol
Extraction mass/volume-ratio
125 mg/mL
Extraction repeats
1
Extraction time
3 d
Extraction temperature
30 °C
Extract drying method
rotary evaporation under vacuum
Extract drying temperature
45 °C
Analysis solvents
70 % aqueous MeOH; 0.5 % formic acid : MeOH (7 : 3)
References

N. Simin, D. Orcic, D. Cetojevic-Simin, N. Mimica-Dukic, G. Anackov, I. Beara, D. Mitic-Culafic, and B. Bozin, "Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae)," LWT - Food Science and Technology , vol. 54 , no. 1 , pp. 139–146 , DOI: 10.1016/j.lwt.2013.05.023 .

Analysis result 10

Detection technique Values Units
[M⁻ H]⁻ 269.05730 m/z
MS²⁻ 107.01030
117.02440
151.01230
m/z
STD
False
TLC
False
UV/Vis detector description
Mass spectrometer description
LC-ESI-QTOF-MS/MS
Organism
Tanacetum poteriifolium  Grierson
wild
dried, powdered
Collection dates
2018
Sample note
Botanical authentication was d in Turkey.one by the botanist Dr. Ismail Senkardes (Marmara University, Faculty of Pharmacy Turkey). The samples were collected in Kastamonu (Hanonu, Yukaricakircay village)
Drying methods
air-dried, dark
Drying temperature
20±5 °C
Dried material storage temperature
4 °C
Dried material storage notes
10 days
Extraction solvents
methanol
Extraction mass/volume-ratio
50 mg/mL
Extraction repeats
1
Extraction time
1 d
Extract drying method
evaporation in vacuo
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Analysis solvents
MeOH
References

G. Zengin, E. Sieniawska, I. Senkardes, M. Picot-Allain, K. Sinan, and M. Mahomoodally, "Antioxidant abilities, key enzyme inhibitory potential and phytochemical profile of Tanacetum poteriifolium Grierson.," Industrial Crops and Products , vol. 140 , pp. 111629 , DOI: 10.1016/j.indcrop.2019.111629 .

Analysis result 11

Detection technique Values Units
[M⁻ H]⁻ 269.04427 m/z
MS²⁻ 151
177
225
m/z
MS³⁻ 65 m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./ Microwave-assisted extraction (MAE) was performed at 600W microwave power.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
50 mg/mL
Extraction repeats
1
Extraction time
30 min
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 225 (5), 177 (15), 151 (100); MS3: 65 (100)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis result 12

Detection technique Values Units
[M⁻ H]⁻ 269.04427 m/z
MS²⁻ 151
177
225
m/z
MS³⁻ 65 m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./Sonication of plant-ethanol mixture was done in ultrasonic bath for an hour at 30 °C.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
40 mg/mL
Extraction repeats
1
Extraction time
1 h
Extraction temperature
30 °C
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 225 (5), 177 (15), 151 (100); MS3: 65 (100)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

Analysis result 13

Detection technique Values Units
[M⁻ H]⁻ 269.04427 m/z
MS²⁻ 151
177
225
m/z
MS³⁻ 65 m/z
STD
True
TLC
False
UV/Vis detector description
UHPLC
Mass spectrometer description
UHPLC-MS, HRMS, LTQ OrbiTrap, UHPLC–LTQ OrbiTrap MS/MS, HESI, heated ESI
Organism
Tanacetum parthenium  (L.) Sch. Bip.
wild
ground, dried
Sample note
The samples were collected in Turkey (Taskopru, Karacaoglu village). Taxonomic spotting was performed at Marmara University, Istanbul, Turkey, voucher number: MARE-19056./The plant samples were macerated at room temperature at dark for 24 h.
Drying methods
air-dried
Extraction solvents
ethanol
Extraction mass/volume-ratio
50 mg/mL
Extraction repeats
1
Extraction time
1 d
Extraction temperature
20±5 °C
Extract drying method
concentration under vacuum
Extract drying temperature
40 °C
Dried extract storage temperature
4 °C
Detection note
MS2 fragments (% base peak): 225 (5), 177 (15), 151 (100); MS3: 65 (100)
References

G. Zengin, A. Cvetanonović, U. Gašić, A. Stupar, G. Bulut, I. Şenkardes, A. Dogan, K. Sinan, Z. Aumeeruddy-Elalfi, A. Aktumsek, and M. Mahomoodally, "Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip.," Industrial Crops and Products , vol. 146 , pp. 112202 , DOI: 10.1016/j.indcrop.2020.112202 .

5,7,4'-trihydroxyflavone

Basics

Category
Flavone
IUPAC-name
5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one
Formula
C15H10O5
Exact mass
270.05280 g/mol
Molecular weight
No weights stored
Structure
Chemical structure of 5,7,4'-trihydroxyflavone
Figure 2.1: Chemical structure of 5,7,4'-trihydroxyflavone

Sources

No links to any potential source for this chemical in the database.

References

  1. Ø. Andersen, and K. Markham, Flavonoids. Chemistry, biochemistry and applications.. CRC Press, 2006

Analysis results

No analysis results for this entry in the database.